a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
MARK(U11(X1, X2)) → MARK(X1)
A__U11(tt, N) → MARK(N)
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__ISNAT(N)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(plus(X1, X2)) → MARK(X2)
A__U21(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__U21(tt, M, N) → MARK(N)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
MARK(and(X1, X2)) → MARK(X1)
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(isNat(X)) → A__ISNAT(X)
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNat(N))
A__PLUS(N, 0) → A__U11(a__isNat(N), N)
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
MARK(U11(X1, X2)) → MARK(X1)
A__U11(tt, N) → MARK(N)
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__ISNAT(N)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(plus(X1, X2)) → MARK(X2)
A__U21(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__U21(tt, M, N) → MARK(N)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
MARK(and(X1, X2)) → MARK(X1)
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(isNat(X)) → A__ISNAT(X)
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNat(N))
A__PLUS(N, 0) → A__U11(a__isNat(N), N)
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(s(X)) → MARK(X)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U21(X1, X2, X3)) → MARK(X1)
A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
A__PLUS(N, s(M)) → A__ISNAT(M)
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNat(N))
Used ordering: Polynomial interpretation [25]:
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
MARK(U11(X1, X2)) → MARK(X1)
A__U11(tt, N) → MARK(N)
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(plus(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__ISNAT(N)
MARK(plus(X1, X2)) → MARK(X2)
A__U21(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__U21(tt, M, N) → MARK(N)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(isNat(X)) → A__ISNAT(X)
A__PLUS(N, 0) → A__U11(a__isNat(N), N)
POL(0) = 0
POL(A__AND(x1, x2)) = x2
POL(A__ISNAT(x1)) = 0
POL(A__PLUS(x1, x2)) = x1 + x2
POL(A__U11(x1, x2)) = x2
POL(A__U21(x1, x2, x3)) = x2 + x3
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = x1 + x2
POL(U21(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(a__U11(x1, x2)) = x1 + x2
POL(a__U21(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(a__and(x1, x2)) = x1 + x2
POL(a__isNat(x1)) = 0
POL(a__plus(x1, x2)) = x1 + x2
POL(and(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(mark(x1)) = x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = 1 + x1
POL(tt) = 0
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
a__plus(N, 0) → a__U11(a__isNat(N), N)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(V1)) → a__isNat(V1)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__and(tt, X) → mark(X)
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__U11(tt, N) → mark(N)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__isNat(X) → isNat(X)
a__isNat(0) → tt
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
MARK(U11(X1, X2)) → MARK(X1)
A__U11(tt, N) → MARK(N)
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(plus(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__ISNAT(N)
MARK(plus(X1, X2)) → MARK(X2)
A__U21(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__U21(tt, M, N) → MARK(N)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(isNat(X)) → A__ISNAT(X)
A__PLUS(N, 0) → A__U11(a__isNat(N), N)
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__U11(tt, N) → MARK(N)
MARK(U11(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__ISNAT(N)
MARK(plus(X1, X2)) → MARK(X2)
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(isNat(X)) → A__ISNAT(X)
A__PLUS(N, 0) → A__U11(a__isNat(N), N)
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(plus(X1, X2)) → MARK(X1)
A__PLUS(N, 0) → A__ISNAT(N)
MARK(plus(X1, X2)) → MARK(X2)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, 0) → A__U11(a__isNat(N), N)
Used ordering: Polynomial interpretation [25]:
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__U11(tt, N) → MARK(N)
MARK(U11(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
POL(0) = 1
POL(A__AND(x1, x2)) = x2
POL(A__ISNAT(x1)) = 0
POL(A__PLUS(x1, x2)) = x1 + x2
POL(A__U11(x1, x2)) = x2
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = x1 + x2
POL(U21(x1, x2, x3)) = 1 + x2 + x3
POL(a__U11(x1, x2)) = x1 + x2
POL(a__U21(x1, x2, x3)) = 1 + x2 + x3
POL(a__and(x1, x2)) = x1 + x2
POL(a__isNat(x1)) = 0
POL(a__plus(x1, x2)) = 1 + x1 + x2
POL(and(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(mark(x1)) = x1
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
a__plus(N, 0) → a__U11(a__isNat(N), N)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(V1)) → a__isNat(V1)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__and(tt, X) → mark(X)
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__U11(tt, N) → mark(N)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__isNat(X) → isNat(X)
a__isNat(0) → tt
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
MARK(U11(X1, X2)) → MARK(X1)
A__U11(tt, N) → MARK(N)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
MARK(isNat(X)) → A__ISNAT(X)
A__AND(tt, X) → MARK(X)
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
Used ordering: Polynomial interpretation with max and min functions [25]:
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__U11(tt, N) → MARK(N)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
MARK(isNat(X)) → A__ISNAT(X)
A__AND(tt, X) → MARK(X)
POL(0) = 1
POL(A__AND(x1, x2)) = x2
POL(A__ISNAT(x1)) = 0
POL(A__U11(x1, x2)) = x2
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 1 + x1 + x2
POL(U21(x1, x2, x3)) = x2 + x3
POL(a__U11(x1, x2)) = 1 + x1 + x2
POL(a__U21(x1, x2, x3)) = x2 + x3
POL(a__and(x1, x2)) = x1 + x2
POL(a__isNat(x1)) = 0
POL(a__plus(x1, x2)) = x1 + x2
POL(and(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(mark(x1)) = x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__U11(tt, N) → MARK(N)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
MARK(isNat(X)) → A__ISNAT(X)
A__AND(tt, X) → MARK(X)
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
MARK(isNat(X)) → A__ISNAT(X)
A__AND(tt, X) → MARK(X)
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
Used ordering: Polynomial interpretation with max and min functions [25]:
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
MARK(isNat(X)) → A__ISNAT(X)
A__AND(tt, X) → MARK(X)
POL(0) = 0
POL(A__AND(x1, x2)) = x2
POL(A__ISNAT(x1)) = 0
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 0
POL(U21(x1, x2, x3)) = 0
POL(a__U11(x1, x2)) = 0
POL(a__U21(x1, x2, x3)) = 0
POL(a__and(x1, x2)) = 0
POL(a__isNat(x1)) = 0
POL(a__plus(x1, x2)) = 0
POL(and(x1, x2)) = 1 + x1 + x2
POL(isNat(x1)) = 0
POL(mark(x1)) = 0
POL(plus(x1, x2)) = 0
POL(s(x1)) = 0
POL(tt) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
MARK(isNat(X)) → A__ISNAT(X)
A__AND(tt, X) → MARK(X)
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__AND(tt, X) → MARK(X)
Used ordering: Polynomial interpretation [25]:
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
MARK(isNat(X)) → A__ISNAT(X)
POL(0) = 0
POL(A__AND(x1, x2)) = 1 + x2
POL(A__ISNAT(x1)) = x1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 0
POL(U21(x1, x2, x3)) = 0
POL(a__U11(x1, x2)) = 0
POL(a__U21(x1, x2, x3)) = 0
POL(a__and(x1, x2)) = 0
POL(a__isNat(x1)) = 0
POL(a__plus(x1, x2)) = 0
POL(and(x1, x2)) = 0
POL(isNat(x1)) = x1
POL(mark(x1)) = 0
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(s(V1)) → A__ISNAT(V1)
MARK(isNat(X)) → A__ISNAT(X)
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
A__ISNAT(s(V1)) → A__ISNAT(V1)
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
A__ISNAT(s(V1)) → A__ISNAT(V1)
From the DPs we obtained the following set of size-change graphs: